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ABSTRACT 

Numerical integration has been carried out for 

where x = E/RT with E = 20, 25, . . . . 100 kcal mole-’ and T = 300. 350. . . . . 1000 K. Using 
the values of -log p(x), numerical equations have been obtained that enable calculations of 

- log p(x) at other values of E and T. 

INTRODUCTION 

The evaluation of kinetic parameters can be carried out for non-isother- 
mal reactions that follow the rate law 

where (Y is the fraction reacted, T is the temperature (K), p is the heating 
rate, A is the frequency factor, and n is the order. This evaluation hinges on 
obtaining values for the integral 

I = 
/ 

Te-E/Rr dT 
0 

(2) 

by one of several means [ l-101. Tables of values of - log Z are available [ 1,2] 
and several approximation techniques are widely used in thermoanalytical 
methods [l-lo]. In an alternative treatment [ 111, the integrated function of 
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(Y, f(a) is written as 

(3) 

where x = E/RT and p(x) represents the integral 

p(x) =lxxw2 e-\'dx 
.1 

The evaluation of this integral has recently been reviewed [ 121 and numerous 
approximation techniques by series have been proposed [ 12-141. The stan- 
dard table of values for -log p(x) is that of Doyle [ 131, although other 
tabulated values exist [ 141. Doyle presents values of -log p(x) for x = lo-50 
in integer units to three decimal places and gives differences for use in 
interpolation to other values of E and T. Zsako’s table contains values for 
- log p(x) for t(C) = loo-430 and E = lo-66 kcal mole-’ (x ranging from 
7.15 to 89.04). However, the -log p(x) values for x < 50 were obtained 
using the interpolation differences given by Doyle and they are not always 
accurate to even three decimal places. For example, with t = 100°C and 
E = 50 kcal mole-‘, - log p(x) = 32.95413 by numerical integration com- 
pared with the reported value of 32.968 [ 141. For x > 50, Zsako’s values were 
obtained by means of the approximate formula 

1 
p(x)=epx ---L 

i i x2 x3 

Thus, there is no single table of highly accurate -log p(x) values covering 
the usually encountered ranges of E and T. In this work, we have carried out 
numerical integrations of eqn. (2) at regular intervals of E and T. These 
- log p(x) values are presented, as are numerical relationships to enable 
- log p(x) to be determined at any desired values of E and T. 

METHODS 

In order to provide a unified set of values for -log p(x) of higher 
accuracy than those available, numerical integration of 

p(x) =/Wx-2 emX dx 
5 

was carried out as previously described [ 151. A Hewlett-Packard HP-34C 
programmable calculator was used employing the f SC1 3 accuracy level 
which results in values of - log p(x) that are accurate to five decimal places 
in most cases. It was determined [16] that the minimum upper limit of at 
least 2 18 was needed to produce full five-decimal accuracy with no change 
produced in the last digit by changing the upper limit. Therefore, the upper 
limit actually used was 250 as the approximation to infinity which would 
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assure full accuracy. Numerical integrations were carried out for values of 
E=20, 25, . . . . 100 kcal mole - ’ and T = 300, 350, . . . , 1000 K. This range 
covers the values for E and T that are most useful in practical cases. Curve 
fitting was carried out by regression analysis as previously described [2]. 

RESULTS AND DISCUSSION 

Numerical integration 

As described earlier, the most widely cited tables of -log p(x) are either 
based on approximation formulas [ 141 or do not include integral values of E 
and T [13]. The results of numerical integrations in this work provide values 
for -log p(x) for an extended range of E and T values. The values shown in 
Table 1 are accurate to all five decimal places in most cases. The only 
exceptions are a few of the values for combinations of lower T and higher E. 
Where they are comparable, these values are in good agreement with those of 
Doyle [ 131 and appear more accurate than those based on approximate 
formulas [ 141. 

Linear relationships 

The relationship 

-logI=ME+B (at constant T) (5) 

has been shown to represent accurately the values of the temperature integral 
[eqn. (2)] at d’ff 1 erent values of E [2,10]. Similarly, the equation 

-logI= N(l/T)+D (at constant E) (6) 

has been shown to represent the relationship of the temperature integral as a 
function of T [2,10]. Therefore, an objective of this work was to determine 
equivalent expressions for - log p(x) from the values obtained by numerical 
integration. Tables 2 and 3 present linear regression parameters for the 
equations 

-logp(x)=ME+B 

and 

(at constant T) (7) 

-logp(x) = N(l/T) +D (at constant E) (8) 
where M, B, N and D are constants obtained by performing linear regression 
on the values shown in Table 1. It is readily apparent that the values of - log 
p(x) can be treated numerically in exactly the same way as -log I values 
can. In each case, the derived numerical equations are of equal accuracy to 
those for -log I [2] when the results of numerical integrations of equal 
accuracy are available. 
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TABLE 2 

Regression parameters for -log jX*xe2 evX dx = ME + B 

(7K) 

Slope Intercept 

(W (B) 

Corr. Coeff. 

300 0.744976 2.945656 0.999990 
350 0.640533 2.830029 0.999986 
400 0.562450 2.717520 0.99998 1 
450 0.501744 2.616388 0.999976 
500 0.453117 2.530608 0.999972 
550 0.413352 2.45 1196 0.999966 
600 0.380210 2.378966 0.999960 
650 0.352163 2.312737 0.999954 
700 0.328119 2.251629 0.999948 
750 0.307278 2.194926 0.99994 1 
800 0.289038 2.142059 0.999933 
850 0.272942 2.092555 0.999926 
900 0.25863 1 2.046037 0.999918 
950 0.245825 2.002160 0.999910 

1000 0.234294 1.960664 0.999901 

TABLE 3 

Regression parameters for -log j,“xm2 emX dx = iV(l/T)+ D 

E Slope Intercept 
(kcal mole- ‘) (N) (D) 

20 4805.66 1.720657 

25 5902.56 1.898619 

30 6997.84 2.046252 

35 8092.47 2.172223 

40 9186.68 2.282 111 
45 10280.58 2.379608 
50 11374.25 2.467235 
55 12467.79 2.546764 
60 13561.18 2.619615 

65 14654.49 2.686803 
70 15 747.98 2.748537 
75 16 840.88 2.807333 

80 17 934.00 2.861850 

85 19027.07 2.913130 

90 20 120.10 2.961558 

95 21235.85 2.97422 1 

100 22 306.09 3.050974 

Corr. Coeff. 

0.999893 
0.999926 
0.999946 

0.999959 
0.999968 
0.999974 
0.999979 
0.999982 
0.999985 
0.999987 
0.999988 
0.999990 
0.999991 
0.999992 
0.999993 
0.999996 
0.999994 
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General equations 

The data shown in Table 2 have been used to evaluate K and L in the 
equation 

M = K(l/T)L (9) 

and to evaluate P and Q in the equation 

B = P log( l/T) + Q (10) 

where M and B are the slope and intercept of eqn. (7) and K, L, P and Q are 
constants. The values obtained by linear regression are K = 176.896, L = 
9.117449, P = 1.897710, and Q = 7.652085. Thus, the equation 

-logp(x) =X(1&E + log(l/T)P + Q (11) 

can be used to evaluate -log p(x) at any values of E and T. Similarly, the 
data shown in Table 3 are used to evaluate X and Y in the equation 

N= YEx 02) 

and W and U in the equation 

D=WlogE+U (13) 

where N and D are the slope and intercept of eqn. (8) and X, Y, W and U 
are constants. Using linear regression, the values Y = 270.237, X = 0.957160, 
IV = 1.898343, and U = - 0.755620 are obtained. These parameters are used 
to establish the equation 

-logp(x)= YEX(l/T)+logEW+ U (14 

Equations (11) and (14) provide rapid evaluation of - log p(x) at any 
desired values of E and T without the necessity for performing numerical 
integrations or approximations by series. Consequently, these equations may 
provide functional bases for non-isothermal kinetic methods [ 171. It should 
be pointed out, however, that eqns. (11) and (14) do not appear to yield 
values of -log p(x) which are as accurate as the -log I values obtained 
using equations of the same form [15]. We have not explored the reason for 
this difference. 

CONCLUSION 

This work has provided a more accurate table of values of - log p(x) than 
was previously available. We have used linear regression to establish the 
constants M, B, N and D for using 

-logp(x)=ME+B (7) 
and 

-logp(x)=N(l/T)+D (8) 
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to calculate -log p(x) for any desired E and T. Also, the slopes and 
intercepts of eqns. (7) and (8) have been determined as functions of l/T and 
E so that two general numerical equations that permit -log p(x) to be 
evaluated at any desired E and T values have been obtained. 
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